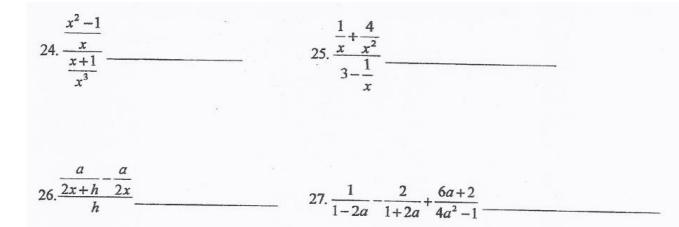
Name:

The purpose of this assignment is to have you practice the mathematical skills necessary to be successful in AP Calculus AB. The skills covered in this packet are skills from Algebra II and PreCalculus. If you need to, you may use reference materials to assist you and refresh your memory (old notes, textbooks, online resources, etc.). While the graphing calculators will be used in class, there are **no calculators allowed** on this packet. You should be able to do everything without a calculator.

AP Calculus AB is a fast-paced course that is taught at the college level. There is a lot of material in the curriculum that must be covered before the AP exam in May. Therefore, we cannot spend a lot of class time re-teaching prerequisite skills. This is why you have this packet. Spend some time with it and make sure you are clear on everything covered in the packet so that you will be successful in calculus. Of course, you are always encouraged to seek help from your teacher if necessary.


This assignment will be collected on Monday August 13, 2018 and graded. Be sure to show all appropriate work to support your answers. In addition, there may be a quiz on this material during the first grading period.

Good Luck!

Show all work - no credit will be awarded for answers missing appropriate work. No calculators!

Section I: Algebra Review

Identify the following statements as true or false. 2. $\frac{1}{p+q} = \frac{1}{p} + \frac{1}{q}$ 3. $\frac{2k}{2x+h} = \frac{k}{x+h}$ 1. $\frac{x+y}{2} = \frac{x}{2} + \frac{y}{2}$ _____ 4. $3 \cdot \frac{a}{b} = \frac{3a}{b}$ _____ 5. $3 \cdot \frac{a+b}{c} = \frac{3a+b}{c}$ _____ 6. $\sqrt{a^2+b^2} = a+b$ _____ Identify the following statements as true or false over the set of real numbers. Give a counter example for any false statement. 8. $x^3 + x > x^3$ 9. $x^2 \ge 0$ 7. $x^3 + 1 > x^3$ 12. $\sqrt{x} \ge 0$ 10. $x^2 \ge x$ 11. $2x \ge x$ 15. $x \le |x|$ $14. \frac{1}{x} \le x$ _____ $13. - x \le 0$ 16. Solve xy' + y + 1 = y' for y'. 17.5 olve $\ln y = kt$ for y. 16. 17. 19. Factor: $x^{2}(x-1) - 4(x-1)$ **18.** Factor: $y^3 + 27$ 18. 19. Simplify each expression. 20. $\frac{(x^2)^3 x}{x^7}$ _____ $21.\sqrt{x} \bullet \sqrt[3]{x} \bullet x^{\frac{1}{6}}$ $22.\frac{5(x+h)^3 - 5x^3}{h} = 23.\frac{3(x+h)^2 - 3x^2}{h} =$

Simplify, using factoring of binomial expressions. Leave answers in factored form.

Example:

$$\frac{(x+1)^3(4x-9) - (16x+9)(x+1)^2}{(x-6)(x+1)} = \frac{(x+1)^2[(x+1)(4x-9) - (16x+9)]}{(x-6)(x+1)}$$

$$= \frac{(x+1)^2(4x^2 - 5x - 9 - 16x - 9)}{(x-6)(x+1)}$$

$$= \frac{(x+1)^2(4x^2 - 21x - 18)}{(x-6)(x+1)}$$

$$= \frac{(x+1)^2(4x+3)(x-6)}{(x-6)(x+1)}$$

$$= (x+1)(4x+3)$$

28. $(x-1)^3(2x-3) - (2x+12)(x-1)^2$

29.
$$\frac{(x-1)^2(3x-1)-2(x-1)\cdot 3}{(x-1)^4}$$

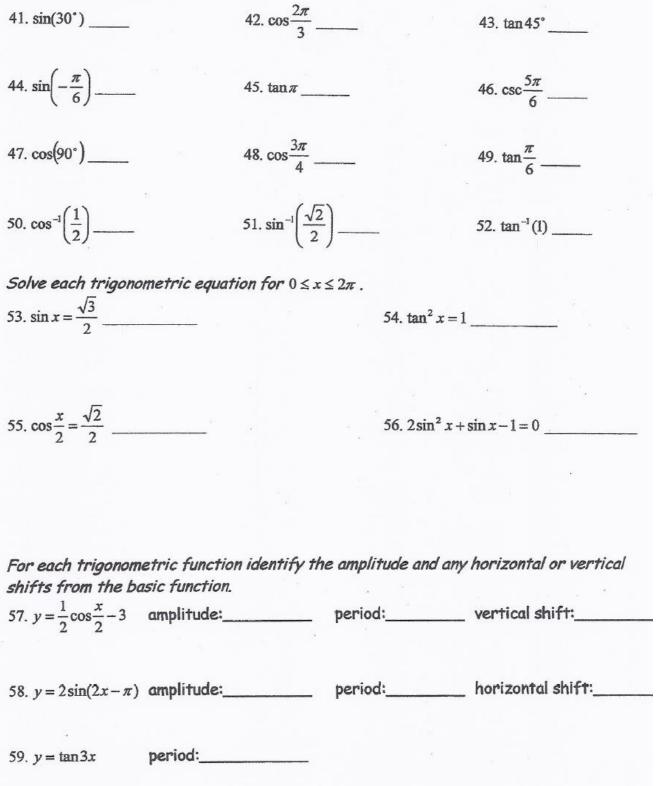
$$30.\frac{(x-1)^3(2x-3)-(4x-1)(x-1)^2}{(x-1)^2(2x-1)}$$

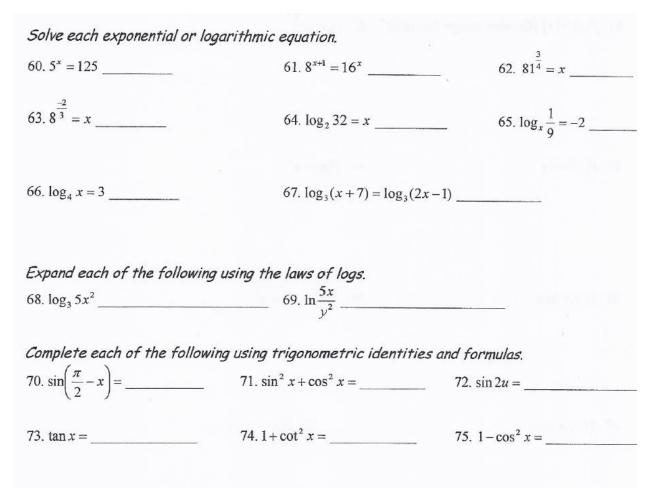
Simplify by rationalizing the numerator.

Example:

$$\frac{\sqrt{x+4}-2}{x} = \frac{\sqrt{x+4}-2}{x} \cdot \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2} = \frac{x+4-4}{x(\sqrt{x+4}+2)} = \frac{x}{x(\sqrt{x+4}+2)} = \frac{1}{\sqrt{x+4}+2}$$

$$31. \frac{\sqrt{x+9}-3}{x} \qquad \qquad 32. \frac{\sqrt{x+h}-\sqrt{x}}{h}$$


Solve each equation or inequality for x over the set of real numbers.


37. |2x-3| = 14 38. $x^2 - 2x - 8 < 0$

Solve each of the system		
39. $x + y = 8$	40. $y = x^2 - 3x$	
2x - y = 7	y = 2x - 6	

Section II: Pre-Calculus Review

Use your knowledge of the unit circle to evaluate each of the following. Leave your answers in radical form.

76. A right triangle has a base of 5 and a hypotenuse of 7. Find the height.

Section III: Graphing Review

Sketch the following functions. State the domain and range of each. Draw and label your own axes.

77.
$$f(x) = x$$
 78. $f(x) = x^2$

79.
$$f(x) = x^3$$
 80. $f(x) = |x|^3$

81. f(x) = [x] (Greatest integer function) 82. $f(x) = \frac{1}{x}$

83. $f(x) = \sqrt{x}$ 84. $f(x) = e^x$

85.
$$f(x) = \ln x$$

86.
$$f(x) = \sqrt{9 - x^2}$$

87. $f(x) = \sin x$

88. $f(x) = \cos x$

 $89. \ f(x) = \tan x$

90. $f(x) = \csc x$

91. $f(x) = \sec x$

92. $f(x) = \cot x$